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Abstract Recently, the Bayesian least absolute shrinkage

and selection operator (LASSO) has been successfully

applied to multiple quantitative trait loci (QTL) mapping,

which assigns the double-exponential prior and the Stu-

dent’s t prior to QTL effect that lead to the shrinkage

estimate of QTL effect. However, as reported by many

researchers, the Bayesian LASSO usually cannot effec-

tively shrink the effects of zero-effect QTL very close to

zero. In this study, the double-exponential prior and Stu-

dent’s t prior are modified so that the estimate of the effect

for zero-effect QTL can be effectively shrunk toward zero.

It is also found that the Student’s t prior is virtually the

same as the Jeffreys’ prior, since both the shape and scale

parameters of the scaled inverse Chi-square prior involved

in the Student’s t prior are estimated very close to zero.

Besides the two modified Bayesian Markov chain Monte

Carlo (MCMC) algorithms, an expectation–maximization

(EM) algorithm with use of the modified double-expo-

nential prior is also adapted. The results shows that the

three new methods perform similarly on true positive rate

and false positive rate for QTL detection, and all of them

outperform the Bayesian LASSO.

Introduction

The least absolute shrinkage and selection operator

(LASSO) is a shrinkage and selection method for linear

regression, which assigns a double-exponential prior for

regression coefficient. Recently, many improved LASSO

methods have been developed for QTL mapping. The

Bayesian LASSO was proposed by Park and Casella (2008)

and applied for multiple QTL mapping by Yi and Xu

(2008), who assigned two kinds of priors to QTL effect, the

LASSO prior (also called double-exponential prior) and the

Student’s t prior. In their method, all the hyperparameters

of the priors are treated as variables and estimated along

with other parameters rather than set beforehand.

The adaptive LASSO has been proposed by Zou (2006)

to practice model selection, which allows different penal-

ization parameters for different regression coefficients, so

that the estimates of regression coefficients can be shrunk

differently. However, the adaptive LASSO requires con-

sistent initial estimates for the regression coefficients,

which are generally not available in oversaturated model

(where the number of predictor is greater than that of

observations). Sun et al. (2010) have extended the adaptive

LASSO to Bayesian adaptive LASSO (BAL) and iterative
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adaptive LASSO (IAL), and both methods are suitable for

oversaturated model. However, the method is sensitive to

the tuning of the hyperparameters d and s, with larger

values of s leading to bad separation between QTL and

non-QTL effect (Mutshinda and Sillanpää 2010).

Mutshinda and Sillanpää (2010) developed an extended

Bayesian LASSO (EBL) for multiple QTL mapping.

Rather than assign a double-exponential prior pðbjÞ /
k
2

e�k bjj j with a common rate parameter k to all regression

coefficients, they assigned independent prior pðbjÞ /
kj

2
e�kj bjj j to each regression coefficient. Furthermore, they

also factorized kj as kj = dgj, where d and gj reflect the

level of model sparsity common to each loci and the extent

of shrinkage across loci. They claimed that the tuning in

the EBL was not critical like that in Bayesian LASSO.

The LASSO prior implemented via EM algorithm

(Dempster et al. 1977) was studied by Xu (2010). He

treated the effects of regression coefficients as missing data

and estimated other parameters by searching the maximum

posterior mode of target function. His method can effec-

tively shrink zero-effect QTL close to zero, but it usually

needs some experiences or cross-validation for choosing

the hyperparameter k (Xu 2010), which may affect the

performance of the method.

In this paper, we modify the double exponential and Stu-

dent’s t priors of Yi and Xu (2008) so that the estimates of

zero-effect QTL can be very close to zero. As the two

improved priors usually result in close forms of posterior

distributions for model parameters, the model parameters can

be sampled with efficient Gibbs sampler. In addition to the two

Bayesian MCMC algorithms, an EM algorithm with use of the

modified double-exponential prior is also adapted. The main

feature of the EM algorithm is that the hyperparameter can be

estimated with data rather than set beforehand. We both use

simulated and real data to valid the proposed methods.

Method

Model

Consider n individuals derived from a backcross (BC)

population and genotyped for p markers, the multiple QTL

model can be expressed as

yi ¼ lþ Xibþ ei ð1Þ

where yi is the phenotypes, l is the population mean;

Xi¼ ðxi1; . . .; xipÞT , where xijis the genotype of ith individ-

ual and jth marker, which equals to 1 or -1 depending on

the genotypes of the marker; b¼ ðb; . . .; bpÞT , where bj is

the main effect of marker j, and ei is the residual error,

which follows normal distribution, ei * N(0, r2). Model 1

also can be applied for other populations, but the coding of

QTL genotype xij should be re-defined accordingly.

The Bayesian LASSO

Double-exponential prior

The population mean follows uniform prior, p(l) � 1, and

the residual variance r2 follows non-informative scale-

invariant prior p(r2) � 1/r2. The regression coefficient bj

follows double-exponential prior (Tibshirani 1996; Park

and Casella 2008),

pðbjÞ ¼
k
2

e�k bjj j; ð2Þ

where k is the hyperparameter. The prior can be factorized

into two-level priors (see Yi and Xu 2008). At the first

level, bj follows normal distribution,

bj s2
j

�
�
� �Nðbj 0; s2

j

�
�
� Þ; ð3Þ

and at the second level, s2
j follows exponential

distribution,

pðs2
j jkÞ ¼ Expon s2

j

k2

2

�
�
�
�

� �

¼ k2

2
e�k2s2

j =2; ð4Þ

where k is treated as variable and will be estimated along

with other parameters (Park and Casella 2008; and Yi and

Xu 2008). A conjugate Gamma prior, Gamma(a, b), with

shape parameter a and scale parameter b being small

positive numbers, are assigned to k2/2. The method is

called DE (method using double-exponential prior) here.

Student’s t prior

The regression coefficient bj follows Student’s t prior,

pðbjÞ ¼ tvðbj a; s2
�
�

�

; ð5Þ

where m, a, and s2 are the degrees of freedom, the location

parameter and the scale parameter, respectively.

The prior (5) can be expressed as two-level priors. At

the first level, bj follows normal distribution (see prior 3);

and at the second level, s2
j follows scaled inverse Chi-

square distribution,

pðs2
j m; s2
�
� Þ ¼ Inv� v2 s2

j m; s2
�
�

� �

/ ðs2
j Þ
�ðm=2þ1Þ

exp �ms2= 2s2
j

� �� �

; ð6Þ

where m and s2 are shape and the scale parameter, respec-

tively. Both m and s2 are treated as unknowns and estimated

from data. A uniform prior U(0, A) with A being a large

number is assigned to s, and thus the posterior distribution
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of s2 follows Gamma distribution, which can be sampled

with Gibbs sampling. A uniform prior U(0, 1) is assigned to

1/m. Since the posterior distribution of m cannot be derived

explicitly, the Metropolis–Hasting algorithm (Metropolis

et al. 1953; Hastings 1970) is used to update it. The method

using the Student’s t prior is called ST here.

Improved Bayesian LASSO

Improved double-exponential prior

We modified the LASSO prior by assigning an independent

double-exponential prior to each marker effect, i.e.,

pðbjÞ /
kj

2
e�kj bjj j, which also can be factorized into two-

level priors. One is prior (3), and the other is

pðs2
j kij Þ ¼ Expon s2

j

k2
i

2

�
�
�
�

� �

¼ k2
i

2
e�k2

i s
2
j =2: ð7Þ

The method is called BIDE (Bayesian algorithm using

the improved double-exponential prior). After we have

finished the original experiments we found that the prior

used here was also studied by Mutshinda and Sillanpää

(2010). However, the prior for hyperparameter kj
2/2 is quite

different. We assign a prior Gamma(a,b) to kj
2/2 with a = 0

and b = 0, whereas they factorized kj into kj = dgj, where

d and gj were further assigned to uniform priors.

Improved Student’s t prior

The improved Student’s t prior assigns a uniform prior U(0,

1) on 1/ exp (m) instead of 1/v. The improved method is

called BIST (Bayesian algorithm using improved Student’s

t prior). With the new prior, the domain of v is from zero to

positive infinity. However, in Yi and Xu’s Student’s t prior,

the domain of v is from 1 to positive infinity, which just

neglects the values between 0 and 1. The values between 0

and 1 are crucial, since our experiments showed that the

posterior estimate of m was very close to zero.

Posterior distributions

For both improved methods, the conditional posterior dis-

tributions of l and bj follow normal distribution and that of

r2 follows inverted Chi-square distribution. In BIDE, the

posterior distribution of s�2
j follows inverse Gaussian

distribution,

s�2
j y;l;b;r2
�
� ;k2

i � InvGauss

ffiffiffiffiffi

k2
i

b2
j

s

;k2
i

 !

; j¼ 1; . . .; p; ð8Þ

and the posterior distribution of kj
2 follows Gamma

distribution,

k2
j y; l; b; r2
�
� ; s2

i �Gamma(1 + a; s2
i =2þ b=2Þ;

j¼ 1;. . .; p;
ð9Þ

which is different from the posterior distribution of k2 in Yi

and Xu (2008).

In BIST, the posterior distributions of s2
j and s2are the

same as those in Yi and Xu (2008). However, the update of m
with M–H algorithm is not provided by them, and a simple

algorithm is developed and presented in Appendix 1.

Extension to EM algorithm

We adapt Xu’s (2010) expectation–maximization (EM)

algorithm for estimating QTL effects by using the

improved double-exponential priors. The difference

between the two methods is that we assign an independent

double-exponential prior to each marker effect and a

Gamma prior, Gamma(0.5,0), to hyperparameter kj
2/2,

whereas he assigns a common double-exponential prior

with hyperparameter k set beforehand. It is noted that the

prior Gamma(0.5,0) used here is also slightly different

from the prior Gamma(0,0) in BIDE, which will be dis-

cussed later. The new EM algorithm is called EMAIL (EM

algorithm for improved LASSO prior) here and the details

are in Appendix 2. The feature of EMAIL is that kj
2 can be

estimated from data rather than set beforehand.

For charity, the priors and algorithms for the three

proposed methods and three related methods are shown in

Table 1.

Table 1 The summary of algorithm details for each method

Method Algorithm Prior

for s2
j

Prior for

hyperparameter

Bayesian algorithm

using the improved

double-exponential

prior (BIDE)

MCMC Eq. (7) Gamma(0,0) to kj
2/2

Bayesian algorithm

using improved

Student’s t prior

(BIST)

MCMC Eq. (6) U(0, 1) to 1/ exp (m)

EM algorithm for

improved LASSO

prior (EMAIL)

EM Eq. (7) Gamma(0.5,0) to kj
2/2

Double-exponential

prior (DE)

MCMC Eq. (4) Gamma(a,b) to k2/2

with a and b being

small positive

numbers

Student’s t prior (ST) MCMC Eq. (6) U(0, 1) to 1/v

Extended Bayesian

LASSO (EBL)

MCMC Eq. (7) kj = dgj with d and

gj assigned uniform

priors
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Simulation studies

We conducted a series of simulated experiments to validate

the three new methods. A BC population consisted of 200

individuals was investigated. Each individual was geno-

typed for 501 markers. The marker interval was 5 cM and

the total length of the genome was *2,500 cM. The effects

and the positions of QTL are depicted in Fig. 1. The

residual variance was 1.0. As the results, the heritability

explained by QTL varied from 1.3 to 22.5% and the total

heritability was 85.0%.

The MCMC was run for 20,000 rounds and saved with

every 10 rounds. The first 1,000 rounds were discarded as

burn-in period. Six methods were used for analysis,

including BIDE, BIST, EMAIL, DE, ST, and EBL. For

BIST, the initial value of 1/ exp (m) was sampled from

uniform distribution U(0,1).

General performance

The estimates of marker effects of the six methods are

presented in Fig. 1. It can be seen that in BIDE, BIST,

EMAIL, and EBL, the effects of most zero-effect markers

were estimated very close to zero and the signals of QTL

were very clear. Among these methods BIDE and BIST

performed quite similar. In general, the estimated QTL

effects and positions of the four methods were all very

close to their true values.

The results of DE and ST showed that the positions

generated clear bumps were also very near the true QTL
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Fig. 1 The true parameters and the estimates of the marker effects with the simulated datasets. The y-axis presents the marker effects and the

x-axis indicates the marker numbers
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positions. However, many spurious effects were found, and

the estimates of QTL effects tended to be underestimated,

which might be caused by the major QTL effects absorbed

by the nearby markers.

Figure 2 depicts the profiles of the shape parameter

v and the scale parameter s2 against the MCMC iterations

in BIST. The values of s2 and v closely converged to zero

after hundreds of iterations. A scaled inverse Chi-square

distribution v2(v, s2) with v and s2 very close to zero

approximates to the Jeffreys’ prior v2(0, 0) used by Xu

(2003).

Receiver operating characteristics (ROC) profiles

The true positive rate (tp rate, or called power) and false

positive rate (fp rate, or called type I error) for each method

were assessed in the ROC profile (Fawcett 2006), in which

tp rate and fp rate were summarized with replicated

experiments under a set of successive thresholds. Follow-

ing Hoti and Sillanpää (2006), we used the absolute pos-

terior mean effect (for Bayesian methods) or the absolute

effect (for EM algorithm) to declare the ‘‘significance’’ of a

QTL. The thresholds were evenly divided into 11 succes-

sive points from 0.07 to 0.25. The markers at the true QTL

positions and nearby the true QTL positions with ±1 locus

were defined as QTL locus; other markers were treated as

non-QTL locus. At each threshold, the tp rate was defined

as the proportion of the number of the QTL detected with

100 replications to the total number of the QTL simulated

(15 9 100). The fp rate was the proportion of the number

of all the spurious markers to the total number non-QTL

locus (501–45) 9 100, with 100 replications. Based on

these definitions, tp rate and fp rate were summarized at the

11 successive thresholds for each method.

Figure 3 shows the ROC profiles of the six methods.

One method with higher ROC profile is better. Therefore,

approximately, the performance of these methods was

ranked as BIDE & BIST & EMAIL [ EBL [ ST [ DE.

Analysis of barley data

We used the barley dataset from the North American

Barley Genome Mapping Project to test the performance of

the proposed methods. The data were collected from a

Steptoe 9 Morex doubled-haploid population containing

150 lines; each was grown in nine different environments

for agronomic traits and 16 different environments for

malting quality traits, respectively. The diastatic power

averaged across nine environments was used for analysis.

The dataset included 223 markers covering a genome of

*1,500 cM, which contained *5% missing marker

genotypes that were replaced by their expected values. The

data can be downloaded from http://wheat.pw.usda.gov/

ggpages/SxM/.

We also applied the six methods to the dataset. For the

Bayesian methods, the MCMC was run for 20,000 itera-

tions, and the first 10,000 was discarded as burn-in period.
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Fig. 2 The traces of the estimates of the scale parameter s2 (top panel) and the shape parameter v (bottom panel) of the scaled inverse Chi-square

prior against the first 1,000 MCMC iterations for the simulated dataset obtained from BIST
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The thinning length was set as 10. Thus, there were 1,000

posterior samples left for posterior analysis.

To declare the ‘‘significance’’ of a QTL, we compared

the absolute posterior mean effect (for Bayesian methods)

or the absolute effect (for EM algorithm) with the threshold

that was obtained from analysis of 100 reshuffled samples

(permutation test). The (1 – a)100th percentile of the dis-

tribution of the largest absolute posterior mean effects (for

Bayesian methods) or the largest absolute effect (for EM

algorithm) of the reshuffled sample was an approximation

of the threshold, where a was taken as 0.05.

Figure 4 depicts the estimates of the marker effects of

the six methods. In BIDE, BIST, EMAIL, and EBL, most

of the marker effects were shrunk toward zero, so that the

profiles were very clear. The profiles of BIDE and BIST

were quite similar. The estimates of the shape parameter

v and the scale parameter s2 in BIST are plotted in Fig. 5,

and they are very close to zero after about 200 rounds of

MCMC iterations. We also tried to use some different
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Fig. 3 The ROC profiles of the six methods. The thresholds are

evenly divided into 11 successive points from 0.07 to 0.25. For each

method, the true positive rate and the false positive rate are

summarized at each threshold with 100 replications. It is noted that

not all the points are provided for DE and ST
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Fig. 4 The estimates of the marker effects with the barley data for each method. The y-axis presents the marker effects and the x-axis indicates

the marker numbers
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initial values for v and s2, but the results showed no clear

difference. DE and ST generated many noisy signals (see

Fig. 4), and it seemed that the major QTL effect was split

into many small effects in the neighborhood of the QTL.

Moreover, the estimates of the major QTL effects were

lower than those with BIDE and BIST. All the conclusions

are consistent with those in the simulation studies.

Two markers exceeded the threshold in BIDE, BIST,

and EBL, and three in EMAIL. However, too many

markers exceeded the threshold in DE and ST, and it

seemed that most of them would be spurious markers with

regard to the results of our simulated study. All the

methods produced two most notable bumps exceeding the

threshold at markers 6 and 205 (count from left to right).

Analysis of the common dataset QTL-MAS XII

To test the performance of the proposed method for han-

dling larger number of predictors, the common dataset of

QTL-MAS XII (quantitative trait loci marker assisted

selection; Lund et al. 2009) was studied. The dataset aims

to predict genomic breeding values (GEBV) using 6,000

genome-wide SNP (single nucleotide polymorphisms)

markers. We only used the first 500 individuals to estimate

the effect of 6,000 SNP markers. The phenotypic values

were re-simulated with QTL genotypes, QTL effects and

residual effect using model 1. In both data simulation and

analysis, the genotype of each marker was coded as -1, 0,

and 1, respectively. The residual variance was 1. Both true

positions and effects of each QTL are depicted in Fig. 6.

We firstly applied EMAIL to the dataset. As shown in

Fig. 6, most of the estimated effects of zero-effect QTL

were shrunk toward zero, whereas those of non-zero QTL

were close to their true values, which made the signals

quite clear.

We also applied BIDE, BIST, and EBL to the dataset,

but they tended to produce several false positive signals

with abnormally large estimates of the effects, which made

the estimate of total genetic variance larger than the total

phenotypic variance (data not shown). The same strange

results were also reported in Bayesian shrinkage method

and stochastic search variable selection (SSVS; Yi et al.

2003) by Xu and Jia (2007) who explained that the strange

results might be caused by the smaller sample size. In

contrast to the above methods, the Student’s t prior was the

most robust to large number of predictors, and the double-

exponential prior was less robust to the Student’s t prior

(data not shown).

Discussion

We have presented three improved LASSO priors for

shrinkage QTL mapping. Two of them are implemented via

Bayesian MCMC algorithm, and one is via EM algorithm.

The results showed that three strategies could estimate the

effect of zero-effect QTL very close to zero, while estimate
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Fig. 5 The traces of the estimates of the scale parameter s2 (top panel) and the shape parameter v (bottom panel) of the scaled inverse Chi-square

prior against the first 1,000 MCMC iterations for the barley data obtained from BIST
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that of non-zero-effect QTL precisely. As a result, they

displayed the advantage on true positive rate and false

positive rate for QTL detection over the traditional

Bayesian LASSO.

BIDE assigns an independent prior to each regression

coefficient, which makes the shrinkage of each regression

coefficients different. In fact, another key improvement of

BIDE is that, a special prior Gamma(0, 0) is assigned to

kj
2/2, which is an improper prior p(kj

2) � 1/kj
2. In practice,

the improper prior usually leads to special results. Xu

(2003) assigned an improper prior p(rj
2) � 1/rj

2 to QTL

variance. He found that the improper prior could result in

the estimate of the variance and the effect of zero-effect

QTL very close to zero. However, in this research, we

found that with the improper prior p(kj
2) � 1/kj

2, the esti-

mate of the rate parameter kj
2 for zero-effect QTL was quite

large. Large kj
2 in turn leaded to a very small variance for

the prior of sj
2, which can be seen from Varðs2

j Þ ¼ 4=k2
j ;

thus, bj would be shrunk to zero, which can be seen from

A3 of Yi and Xu (2008).

In some papers, the improper prior was claimed to have

risk to generate improper posterior (e.g., ter Braak et al.

2005). They assigned a proper prior pðr2
j Þ / 1=r2ð�1þdÞ

j

with 0 \ d B 0.5 instead of an improper prior v-2(0, 0)

(also can be written as 1/rj
2) to QTL variance rj

2. With two

extreme values of d, 0 and 0.5, the prior results in two

priors, pðr2
j Þ / 1=r2

j and p(rj
2) � 1/rj, respectively. In

BIDE, the proper prior Gamma(a, 0) with 0 \ a B 0.5 can

be assigned to kj
2/2. At the two extreme values of a, 0 and

0.5, the prior just leads to the two priors p(kj
2) � 1/kj

2 and

p(kj
2) � 1/kj. We have attempted to use proper prior by

varying a from 0 to 0.05 and conducted several experi-

ments, but the results showed no clear difference (data not

shown).

In BIST, we assign a uniform prior Uð0; 1Þ on 1/exp (m).

As the domain of v ranges from zero to positive infinity, the

estimate of it may become close to zero. Another simple

prior that assigns Uð0;þ /Þ on 1/m with domain of

v ranging from zero to positive infinity, could also lead to

the estimate of v close to zero. These results suggest that

the allowance of the prior of v to cover the values close to

zero is necessary.

The theory of BIDE and EBL is very similar. BIDE uses

a locus-specified shrinkage factor kj for each marker, while

EBL uses kj = dgj. If d is fixed to 1, then the two methods

are very similar and the only difference lies in the prior of

kj. BIDE uses a prior Gamma(0,0), while EBL uses a

uniform prior that is equivalent to the prior Gamma(1,0). In

EMAIL, a prior Gamma(0.5,0) is assigned to kj
2/2, which

performed well in our experiments. An improper prior

Gamma(0,0) is also attempted to assign to kj
2/2, but kj

2 has

no solution (can be seen from Eq. 21).

We have applied the three new methods to the QTL

mapping. Another topic that uses genome-wide SNP

markers to predict breeding values, called genomic selec-

tion (GS), also has been studied widely. The GS firstly

estimates the effects of all markers using a training dataset,

and then predicts the breeding values for individuals out-

side the training dataset. The application of the proposed

methods to GS is straightforward, but the performance is

not assessed here, which is left for further investigation.
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Fig. 6 The estimates of the marker effects with the re-simulated

QTL-MAS dataset. The y-axis presents the marker effects and the

x-axis indicates the marker numbers. The top panel shows the true

effects and positions of the markers, and the bottom panel shows the

estimates of marker effect with EMAIL
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Appendix 1: The M–H algorithm for updating m

For simplicity, we update x = 1/ exp (m) instead of m. We

firstly proposes a new value of x, x(*), around the old one

x(0) (x(*) = x(0) ? d, where d is tuning parameter that is

sampled from uniform distribution with bound -0.05 and

0.05). The tuning is very narrow so that x(*) can be very

close to 1, and thus m can be very close to 0. The accep-

tance probability is

r ¼
Qp

i¼1 pðs2
j jvð�Þ; s2Þ

Qp
i¼1 pðs2

j jvð0Þ; s2Þ �
pðxð�ÞÞ
pðxð0ÞÞ �

qðxð0Þjxð�ÞÞ
qðxð�Þjxð0ÞÞ ð10Þ

where, mð�Þ ¼ � lnðxð�ÞÞand m(0) = - ln (x(0)), which are

derived from x = 1/ exp (m). The first term is the

probability density function of scaled inverse Chi-square

distribution,

pðs2
j v; s2
�
� Þ ¼ ðvs2=2Þv=2

Cðv=2Þs2ð1þv=2Þ
j

exp
�vs2

2s2
j

 !

; ð11Þ

the second term is the uniform prior for x, and

p(x(*)) = p(x(0)); and the third is the proposal ratio. If

x(*) is not close to the end points 0 or 1,

qðxð0Þ
�
�xð�ÞÞ ¼ 1=ð2dÞ; if x(*) is close to the left bound 0,

qðxð0Þ
�
�xð�ÞÞ ¼ 1=ðdþ xð�ÞÞ; and if x(*) is close to the right

bound 1, qðxð0Þ
�
�xð�ÞÞ ¼ 1=ðdþ 1� xð�ÞÞ. Similarly, if

x(0) is not close to the end points 0 or 1,

qðxð�Þ
�
�xð0ÞÞ ¼ 1=ð2dÞ; if x(0) is close to the ends of the

bound 0, qðxð�Þ
�
�xð0ÞÞ ¼ 1=ðdþ xð0ÞÞ; and if x(0) is close

to the right bound 1, qðxð�Þjxð0ÞÞ ¼ 1=ðdþ 1� xð0ÞÞ. If

x(*) is accepted, m(*) = - ln (x(*)) is also accepted.

Appendix 2: The EM algorithm using the improved

double-exponential prior

Consider the linear model of Eq. 1, the total variance is

V ¼
Xp

j¼1

XjX
0
jr

2
j þ Ir2; ð12Þ

where, I is a n 9 n identity matrix. We assign the modified

double-exponential prior to bj, which can be factorized into

two-level priors, the prior (3) and the prior (7). The prior of

kj
2/2 is assigned a Gamma distribution, Gammaða; bÞ. Let

K ¼ k2
j

n op

j¼1
, R ¼ s2

j

n op

j¼1
and h = (r2, l, K, R); then

the likelihood can be expressed as

Lðh b;yj Þ ¼ pðy b;r2;l
�
� Þpðb Rj ÞpðRjKÞpðKÞ

/ ðr2Þ�n=2
exp � 1

2r2
ðy�l�XbÞ0ðy�l�XbÞ

	 


�
Yp

j¼1
s�1

j exp �
b2

j

2s2
j

" #

�
Yp

j¼1

k2
j

2
exp �

k2
j

2
s2

j

" #

�
Yp

j¼1
ba

k2
j

2

" #a�1

exp �b
k2

j

2

" #

:

ð13Þ

The log-likelihood function is

ln Lðh b; yj Þ / � n

2
lnðr2Þ � 1

2r2
ðy� l� XbÞ0ðy� l� XbÞ

� 1

2

Xp

j¼1

lnðs2
j Þ �

Xp

j¼1

1

2s2
j

b2
j þ

Xp

j¼1

ln
k2

j

2

� 1

2

Xp

j¼1

k2
j s

2
j þ ða� 1Þ

Xp

j¼1

ln
k2

j

2
�
Xp

j¼1

b
k2

j

2
:

ð14Þ

The EM algorithm developed here treats the model

effect b as missing values (Xu 2010).

E-step

The E-step involves taking the expected value of the log-

likelihood, conditional on y and under h[t], to get

Qðh h½t�
�
�
� Þ ¼ � n

2
lnðr2Þ � 1

2

Xp

j¼1

lnðs2
j Þ �

Xp

j¼1

1

2s2
j

Eðb2
j yj ; h½t�Þ

� 1

2r2
Eb yj ;h½t� ðy� l� XbÞ0ðy� l� XbÞ

þ
Xp

j¼1

ln
k2

j

2
� 1

2

Xp

j¼1

k2
j s

2
j þ ða� 1Þ

Xp

j¼1

ln
k2

j

2
�
Xp

j¼1

b
k2

j

2
;

ð15Þ
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where,

Ebj yj ;h½t� ðy� l�
Xp

j¼1

XjbjÞ0ðy� l�
Xp

j¼1

XjbjÞ

¼ ½y� l�
Xp

j¼1

XjEðbj yj ; h½t�Þ�0

½y� l�
Xp

j¼1

XjEðbj yj ; h½t�Þ�

þ
Xp

j¼1

X0jXjvarðbj yj ; h½t�Þ:

ð16Þ

In Eq. 16,

Eðbj yj ; h½t�Þ ¼ s2½t�
j X0jV

�1ðy� l½t�1nÞ and ð17Þ

varðbj y; h½t�
�
�
� Þ ¼ s2½t�

j � s2½t�
j X0jV

�1Xjs
2½t�
j ; ð18Þ

and in Eq. 15

Eðb2
j y; h½t�
�
�
� Þ ¼ Eðbj y; h½t�

�
�
� Þ

h i2

þvarðbj yj ; h½t�Þ: ð19Þ

M-step

The M-step maximizes this expression over l, s2
j , kj

2 and r2

to produce the next estimate. Set o
ol Qðh h½t�

�
�
� Þ ¼ 0,

o
os2

j

Qðh h½t�
�
�
� Þ ¼ 0, o

ok2
j

Qðh h½t�
�
�
� Þ ¼ 0 and o

or2 Qðh h½t�
�
�
� Þ ¼ 0 to

get

lðtþ1Þ ¼ 10nðy�
Xp

j¼1
XjEðbj yj ; h½t�Þ=n; ð20Þ

s2ðtþ1Þ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4k2
j Eðb2

j yj ; h½t�Þ
q

� 1

2k2
j

; ð21Þ

k2ðtþ1Þ
j ¼ 2a

s2
j þ b

; ð22Þ

r2ðtþ1Þ ¼ 1

n
y� l�

Xp

j¼1
XjEðbj yj ; h½t�Þ

� �0

y� l�
Xp

j¼1
XjEðbj yj ; h½t�Þ

� �

þ 1

n

Xp

j¼1
X0jXjvarðbj yj ; h½t�Þ:

ð23Þ

Given the initial values for h, then the EM algorithm

proceeds with repeatedly update E-step 17–19) and M-step

20-23 until convergence is reached.
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